Recently reported superconductivity in the full-Heusler and boride compounds

Tomasz Klimczuk

Faculty of Applied Physics and Mathematics and Advanced Materials Centre, Gdansk University of Technology, Gdańsk, Poland.

There are more than 1000 reported compounds in the full Heusler family and only about 40 reveal superconductivity [1,2]. Here we present details of the synthesis and physical properties (resistivity, magnetization, and heat capacity) of MgPd₂Sb [2] and the recently reported Li-based ternary intermetallic superconductors LiGa₂Ir [3] and LiPd₂Ge [4]. The first compound, together with isoelectronic LiGa₂Rh [5], is one of the only two superconductors known in this system with valence electron count (VEC) = 16. The experiments confirm bulk superconductivity with $T_c = 2.95$ K and suggest that LiGa₂Ir is a weak-coupling type-II superconductor. The second compound was synthesized together with LiPd₂Si and LiPd₂Sn. Superconductivity above 1.7 K was found only in LiPd₂Ge ($T_c = 1.96$ K) but theoretical studies suggest that LiPd₂Si and LiPd₂Ge is due to presence of the soft phonon modes. Surprisingly, LiPd₂Ge is a type-I superconductor, which is very rare among ternary intermetallic compounds.

In the second part of the lecture, we will present a new class of non-centrosymmetric superconductors (NCS). The boride compounds with MRh_2B_2 and MIr_2B_2 (M = Nb, Ta) stoichiometry were first reported by Carnicom, et al. [6] and Górnicka, et al. [7], respectively. They form in the brand-new crystal structure types, both noncentrosymmetric, presented in the figure below. MRh_2B_2 is found in the chiral space group $P3_1$ whereas isoelectronic MIr_2B_2 crystallizes in the monoclinic *Cc* space group. Common features of these subfamilies are boron dimers and repeating units marked as X, Y, Z shown in the figure.

T. Klimczuk, et al., Phys. Rev. B, **85**, 174505 (2012).
M.J. Winiarski, et al., Phys. Rev. B, **103**, 214501 (2021).
K. Górnicka, et al., Scientific Reports, **11**, 16517 (2021).
K. Górnicka, et al., Phys. Rev. B, **102**, 024507 (2020).
E. Carnicom, et al., Chem. Mater. **31**, 2164–2173 (2019).
E. Carnicom, et al., Sci. Adv. **4**, eaar7969 (2018).
K. Górnicka, et al., Adv. Funct. Mater. **31**, 2007960 (2021).

The highest superconducting critical temperature is observed in NbRh₂B₂ and NbIr₂B₂ with $T_c = 7.6$ K and 7.2 K, respectively. Slightly lower T_c is observed for TaRh₂B₂ (5.8 K) and TaIr₂B₂ (5.2 K).

The derived superconducting parameters show that MRh₂B₂ and MIr₂B₂ (M = Nb, Ta) are type II BCS moderately coupled superconductors with the upper critical field $\mu_0H_{c2}(0)$ exceeding the Pauli limit μ_0H_{c2} for the all studies superconductors.

This project is supported by a National Science Centre (PL) project: 2017/27/B/ST5/03044.