Lundi 6 novembre 2017, 12h30
Ecole de Physique, Auditoire Stueckelberg

«Quantum Simulation of Gauge Theories»

Prof. Uwe-Jens Wiese

Albert Einstein Center for Fundamental Physics, Bern University

Abstract:

The Monte Carlo simulation of large and dense strongly coupled quantum systems, such as strongly correlated electrons in condensed matter physics or strongly interacting quarks and gluons in particle physics, suffer from the notorious sign problem, which reflects quantum entanglement. While classical computers are inefficient for simulating high-temperature superconductors or dense nuclear or quark matter, quantum simulators provide an attractive alternative. Quantum simulators are special purpose analog quantum computers which use intrinsically quantum mechanical hardware, such as trapped ions or ultracold atoms in an optical lattice. Since they realize quantum entanglement in their hardware, quantum simulators do not suffer from the sign problem. Gauge theories play a central role in particle and condensed matter physics as well as in quantum information processing. Quantum link models provide an unconventional realization of gauge theories, which is particularly well suited for quantum simulation. In particular, using ultracold Fermi-Bose mixtures or alkaline-earth atoms in optical lattices, quantum simulator constructions have been proposed for Abelian and non-Abelian gauge theories coupled to fermionic matter. This also allows the simulation of the real-time evolution of gauge theories, which is beyond reach of classical simulation techniques.

Une collation en compagnie du conférencier sera offerte après le colloque.

Prof. Dmitry Abanin

Genève, le 23 octobre 2017/nc
Secrétariat de la Section de Physique - N. Chaduiron – 022 379.63.83