Percolation without FKG (Damien Gayet, Institut Fourier / Université Grenoble Alpes)

12.11.2018 15:15 – 16:15

The Fortuin-Kasteleyn-Ginibre inequality is a crucial tool in percolation theory. It says in particular that positive crossings of two overlapping rectangles are positively correlated. I will explain that a large family of discrete random models close to the Bernoulli percolation still satisfies percolation features, like the box-crossing property, even when they don't satisfy FKG. This applies to the antiferromagnetic Ising model with small parameter and certain discrete Gaussian fields with oscillating (but strongly decaying) 2-point correlation function. This is a joint work with Vincent Beffara.


Room 17, Séminaire "Mathématique Physique"

Organisé par

Section de mathématiques


Damien Gayet, Institut Fourier / Université Grenoble Alpes

entrée libre


Catégorie: Séminaire