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Rigid measures: definition

Definition

Let G be a locally compact second countable (Icsc) group, and let X
be a compact G-space. A non-singular probability measure

v € Prob(X) is said to be G-rigid if it has full support and the
canonical embedding is the unique G-equivariant unital positive map
from C(X) into L*°(X,v).

1. It follows from results of Ozawa (2007) and Bassi—Radulescu (2020)
that if v € Prob(X) is G-rigid then id : X — X has the alignment
property in the sense of Furman (JAMS 2008):

an equivariant measurable map 7 : X — B, where (X,v) is a
non-singular probability G-space, B is a topological space, is said to
have the alignment property if the only equivariant map from

X — Prob(B) is the one given by x = 0y ().



Rigid measures: definition

Definition

Let G be a locally compact second countable (Icsc) group, and let X
be a compact G-space. A non-singular probability measure

v € Prob(X) is said to be G-rigid if it has full support and the
canonical embedding is the unique G-equivariant unital positive map
from C(X) into L*°(X,v).

Remark

2. The requirement of v having full support is of course not necessary
in order to make sense of the definition. But it suffices for the purpose
of this talk and simplifies some statements.



Rigid measures: definition

Definition

Let G be a locally compact second countable (Icsc) group, and let X
be a compact G-space. A non-singular probability measure

v € Prob(X) is said to be G-rigid if it has full support and the
canonical embedding is the unique G-equivariant unital positive map
from C(X) into L*°(X,v).

Remark

3. Observe from the definition that rigidity is in fact a property of the
measure-class rather than a single measure. Furthermore, it can be
considered as a property of the algebra L*°(X,v) - the existence of an
L1-dense (L>®-closed) algebra with unique equivariant u.p. map.



Rigid measures vs. boundaries

G-spaces supporting rigid measures share many properties with
G-boundaries.

Let G ~ X, and p € Prob(G) be absolutely continuous,

1. Topological boundary actions: we say X is a G-boundary if for
every v € Prob(X) and x € X there are (g;) C G such that
giv — 6X.

2. Measure-theoretical boundary actions: a probability
v € Prob(X) is said to be p-stationary if puxv = v.
The p-stationary measure v is said to be a p-boundary if for
almost every trajectory w = (gk) € Q of the p-random walk on G,
the sequence (gxv) converges to a Dirac measure 6, .



Some elementary facts

Proposition

If a compact G-space X admits both a rigid probability measure and
an invariant probability measure then X is a singleton.

Thus, if G admits a non-trivial action with a rigid measure, then G is
non-amenable;

and, the only finite G-space that admits a rigid measure is the trivial
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Proposition

Let G ~ X, and v € Prob(X) be G-rigid. Then the only bounded
linear G-equivariant map on L*(X,v), sending probs to probs, is the
identity map.



General properties

Proposition

Let G ~ X and let v € Prob(X) be G-rigid. Then every element
g € G whose centralizer C¢(g) has finite co-volume in G acts trivially
on X.

Corollary

If a discrete group I admits a faithful action on a compact space X
supporting a rigid measure, then " is an ICC group.
(The converse is not true, as there are amenable ICC groups.)



Restriction to lattices

Theorem

Suppose H < G is a closed subgroup with finite co-volume (e.g. a

lattice). Then any G-rigid measure v on any compact G-space X is
H-rigid.



Rigid measures: Examples

Let 1 € Prob(G) be an absolutely continuous probability on G. Let X

be a compact G-space supporting a unique p-stationary probability v
such that v is a u-boundary. Then v is G-rigid.



Rigid measures: Examples

For the following actions ' ~ X, any generating measure on G
satisfies the above:

e linear groups acting on flag varieties (Ledrappier; Kaimanovich;
Brofferio-Schapira);

e hyperbolic groups acting on the Gromov boundary (Kaimanovich);

e non-elementary subgroups of mapping class groups acting on the
Thurston boundary (Kaimanovich-Masur);

e non-elementary subgroups of Out(F,,) acting on the boundary of
the outer space (Horbez).



Rigid measures vs. topological boundaries

Proposition (Ozawa; Bassi—Radulescu)

Let T be a discrete group, I ~ X, and v € Prob(X) be I-rigid. If the
action T ~ (X,v) is Zimmer-amenable then X is a [-boundary.

Recall: G ~ (Y,n) is Zimmer amenable if there is an equivariant
positive linear projection L(G x Y) — L>=(Y).



Rigid measures vs. topological boundaries

(The argument given in proof of the above result does not directly
generalize to non-discrete group case, but) we have:

Theorem

Let G be a l.c.s.c. group which contains a lattice. Let G ~ X, and
v € Prob(X) be G-rigid. If G ~ (X,v) is Zimmer amenable then X is
a G-boundary.



Rigid measures: examples

Suppose ' ~ X, and A < T such that

o there is a unique A-invariant probability on X of the form J,, for a
N-fixed point xp € X,

e the l-orbit of xg is dense in X,

then for any fully supported p € Prob(I"), the measure
V=2 ger 1(8)dgx is rigid.

e.g. [~ X convergence action, g € I a parabolic element.

I~ X minimal, X is metrizable, g € G Lipschitz, with constant < 1.



Rigid measures: examples

|
Say the subgroup A < T has the spectral gap property if

A~ (T/N)\ {A} has spectral gap.

This is equivalent to that d;p} being the unique A-invariant mean on

(T /A).

If A <T has the spectral gap property, then ' ~ 3(I'/A) satisfies the
above, hence any v € Prob(I'/A) with full support is rigid as a
probability on B(I'/A).

eg. [=5Lp41(Z), N=SL,(Z) for n>2
F'=Ax7T, Ais non-amenable, |T| > 3.



Rigid measures: applications

Representation rigidity of subgroups

For A <T, denote by Ar/a the quasi-regular representation of I on
2(T/N).

By Mackey, )\r//\ is irreducible iff A is self-commensurated in I, that is

{geT|[N:Anghg™ ] <ooand [ghg™ : Anghg™'] < oo} = A

Theorem (Mackey 1951)

Let A and T be self-commensurated subgroups of I'. If Ar/p ~u Ar/v,
then N is conjugate to T.



Rigid measures: applications

But the more appropriate notion of equivalence in discrete case is weak
equivalence.

Representation rigidity of subgroups

Let m,0 € Rep(I'). Recall that 7 is weakly contained in o, written
T <o, if

1Y cim(e)llsn) < 1D ciole) sy
i=1 i=1
for any ¢1,...,c, €C, g1,...,g, €T, n € N.

We say 7 is weakly equivalent to o, written 7 ~ o, if T < 0 and o < 7.

Theorem (Bekka-K.)

Let N <T have the spectral gap property, and let T <T be
self-commensurated. If Ar/n =~ Ar /v, then \ is conjugate to T.



Rigid measures: applications

Representation rigidity of subgroups

7 < o is equivalent to say that the map o(g) — m(g) extends to a
continuous map ¢ from the norm-closure C;(T) of the

span{o(g) : g € I'} to the norm-closure C*(I') of the

span{m(g): g €T}.

In this case, by Arveson's extension theorem, the map ¢ extends to a
completely positive map B(H,) — B(H;), which would automatically
be -equivariant for the action of I' by inner automorphisms on both
sides.



Rigid measures: applications

Representation rigidity of subgroups

But existence a -equivariant unital completely positive map

B(H,) — B(Hx) is a much weaker condition than 7 < o.

Let us write m << o for this property. Then 1 << o for any o, and
o <= 1r iff o is amenable in the sense of Bekka.

Thus, << gives rise to an equivalence relation in which all amenable
representations are equivalent.

Theorem

Let N and T be subgroups of I with the spectral gap property. If
Ar/an <= Arjr and Arjv <= Ar/a, then A is conjugate to T.



Rigid measures: applications

Theorem (Nevo—Sageev 2013)

Let T be a countable group and 1 € Prob(I") be generating such that
the Poisson boundary of (I', 1) has a uniquely stationary compact
model (B,v). Then any Zimmer-amenable p-stationary action of I is a
measurable extension of (B, v).



Rigid measures: applications

Theorem (Nevo—-Sageev 2013)

Let T be a countable group and 1 € Prob(I") be generating such that
the Poisson boundary of (I', 1) has a uniquely stationary compact
model (B,v). Then (B,v) has no proper Zimmer-amenable I -factor.



Rigid measures: applications

Generalizations (commutative case):

Theorem

Let T ~ X, v € Prob(X) be I-rigid, and T ~ (Z, m) be a p.m.p.
action. Then there is no proper Zimmer-amenable intermediate factor
(X x Z,vxm)—(Y,n) = (Z,m).



Rigid measures: applications

von Neumann algebras

Recall that a von Neumann algebra is unital self-adjoint subalgebra
M C B(H) which is closed in weak operator topology.

e.g. the weak closure LT of span{)\;:g €T} C B(/*(I))

'~ (Y,n) non-singular ~- the crossed product von Neumann
algebra T x L*°(Y,n) is the weak closure of

span{ign(f) 1 g € T, f € L(Y,n)} C B(LA(T x X)),
where Ag(€)(h, x) = &(g~"h,x) and [ (£)(€)I(h,x) = f(hx)&(h, x)

(main point: T x L*°(Y,n) contains a copy of LI and a copy of
L=(Y, ), and 7(£,) = Agm(F)Ag +



Rigid measures: applications

Amenable von Neumann algebras

There is a natural notion of amenability for von Neumann algebras:
we have LI is amenable iff I is amenable, and
I'x L>°(Y,n) is amenable iff I ~ (Y, n) is Zimmer amenable.

Theorem

Let T ~ X, v € Prob(X) be I-rigid, and let T ~ (Z, m) be a p.m.p.
action. Suppose

Fx L(Z,m) C M CT xL®XxZ,vxm)

is an inclusion of von Neumann algebras. If M is amenable, then
M=Tx L®(X x Z,v x m).



Rigid measures: applications

Maximal amenable von Neumann subalgebras

An important problem in von Neumann algebras: Given a vN algebra
M, describe its maximal amenable vN subalgebras;

(e.g., is LA a maximal amenable subalgebra of LI if A <T is maximal
amenable subgroup?)

A general fact for vN algebras M C B(H):
M is amenable iff M" :={T € B(H): ST = TS for all S € M} is
amenable.



Rigid measures: applications

Maximal amenable von Neumann subalgebras

An important problem in von Neumann algebras: Given a vN algebra
M, describe its maximal amenable vN subalgebras.

Theorem

Let T ~ X, v € Prob(X) be I'-rigid, and let T ~ (Z, m) be a p.m.p.
action. Then there is no amenable von Neumann subalgebra

N CT x (B(L*(X,v))®L>(Z,m)) that contains

I'x L°(X x Z,v x m) as a proper subalgebra.

In particular, if T ~ (X, v) is Zimmer amenable, then

['x L>®(X x Z,v x m) is maximal amenable in

[ x (B(L2(X,v))®L>(Z, m)).

The above theorem generalizes and strengthens a recent result of
Suzuki (2019).



Thanks!



