


Biological nanopores for singlemolecule analysis

Prof Chan Cao

Department of Inorganic and Analytical chemistry, Chemistry and Biochemistry, University of Geneva, Switzerland

The nanopore technique is an electrophoretic approach that can identify a single molecule as they pass through a nanometer-scale pore. By measuring the ionic current changes induced by the target molecule, various chemical and physical properties - such as size, mass, composition, structure, sequence and conformation - can be obtained.

This technique has become a powerful tool for single-molecule analysis in many fields, including metal ion detection, single-molecule chemistry, polymer size discrimination, nucleic acid sequencing, and protein/peptide/glycan analysis. In this presentation, I will first discuss our work on optimizing the structure of biological nanopores to improve sensing resolution. Next, I will highlight applications of engineered nanopores in molecular sensing and sequencing, including decoding digital information stored in macromolecules and detecting biomarkers for neurodegenerative diseases. Finally, I will demonstrate how we leverage this method to explore fundamental biophysical questions.

Cette conférence sera précédée par l'assemblée générale :

LUNDI 10 MARS 2025 à 17h30

Université de Genève – Bâtiment Science II Auditoire A-150 30 quai Ernest-Ansermet Genève La conférence est publique

Avec le soutien de :

