The cohomology of hyperplane arrangements and local coefficients (Paul Turner, Université de Genève)

19.04.2018 14:15

A hyperplane arrangement is a finite collection of (affine) hyperplanes of a finite dimensional vector space. The combinatorics of such an object is encoded by its intersection poset consisting of all non-empty intersections of the hyperplanes. In this talk I will discuss the cohomology of hyperplane arrangements, briefly mentioning the two most common definitions (and associated results), before introducing another construction using local coefficients. The main example throughout will be the braid arrangement.


Room 17, Séminaire "Topologie et Géométrie"

Organisé par

Section de mathématiques


Paul Turner, Université de Genève

entrée libre


Catégorie: Séminaire