Quantitative equidistribution of random walks by automorphisms on nilmanifolds (Tsviqa Lakrec, UNIGE)

28.10.2025 10:30

By a theorem of Bourgain-Furman-Lindenstrauss-Mozes, for any irrational starting point the random walk on a d-dimensional torus induced by the automorphism group GL(d,Z) approaches a uniform distribution at an exponential rate. The rate is quantified by diophantine properties of the starting point. I will report on an upcoming work with Weikun He and Elon Lindenstrauss that generalizes this theorem and our previous result on Heisenberg nilmanifolds to random walks on 2-step nilmanifolds by automorphisms.


Lieu

Bâtiment: Conseil Général 7-9

Room 1-05, Tuesday 28.10.2025, Séminaire "Groupes et géométrie"

Organisé par

Section de mathématiques

Intervenant-e-s

Tsviqa Lakrec, UNIGE

entrée libre

Classement

Catégorie: Séminaire

Mots clés: groupes et géométrie