Branching Processes and the Fisher–KPP Equation in Spatially Random Environments (Alexander Drewitz, University of Cologne)

01.12.2025 16:15 – 18:00

Abstract:
Branching Brownian motion, branching random walks, and the Fisher–KPP equation have been central objects of study in probability theory and mathematical physics over the past decades. Through the Feynman–Kac and McKean representations, the behavior of extremal particles in the branching models is intimately linked to the position of the traveling wave front in the Fisher–KPP equation.

In this talk, I will present recent progress on extensions of these classical models to spatially random environments, incorporating random branching rates and random nonlinearities. It turns out that such inhomogeneities give rise to a significantly richer and more delicate phenomenology than in the homogeneous case.

Lieu

Bâtiment: Conseil Général 7-9

Room 1-15, Séminaire Math Physics

Organisé par

Section de mathématiques

Intervenant-e-s

Alexander Drewitz , University of Cologne

entrée libre

Classement

Catégorie: Séminaire

Mots clés: mathématique physique, math physics