Irreducible SL(2,C)-representations of integer homology 3-spheres (Raphael Zentner, Regensburg)

15.03.2018 14:15

We prove that the splicing of any two non trivial knots in the 3-sphere admits an irreducible SU(2)-representation of its fundamental group. This uses instanton gauge theory, and in particular a non-vanishing result of Kronheimer-Mrowka and some new results that we establish for holonomy perturbations of the ASD equation. Using a result of Boileau, Rubinstein and Wang (which builds on the geometrization theorem of 3-manifolds), it follows that the fundamental group of any integer homology 3-sphere different from the 3-sphere admits irreducible representations of its fundamental group in SL(2,C).

Lieu

Room 17, Séminaire de Topologie et Géométrie

Organisé par

Section de mathématiques

Intervenants

Raphael Zentner, Regensburg

entrée libre

Classement

Catégorie: Séminaire