An explicit proof of the Baum-Connes conjecture for some wreath products (Sanaz Pooya, Université de Neuchâtel)

17.04.2018 10:30

The Baum-Connes conjecture for a group G predicts that the assembly map μGi : KGi (EG) → Ki(Cr∗G) for i = 0, 1 is an isomorphism of abelian groups. Due to Higson and Kasparov’s result, all a-T-menable groups satisfy the conjecture, hence the group G = F ≀ Fn. This result however does not describe the K-groups. In this talk, we shed light on the assembly map for this group and describe it explicitly. This means that we compute the K-theory of Cr∗G and the equivariant K-homology of EG, and present their bases. In doing so we reprove the conjecture for this group.

Lieu

Room 623, Séminaire "Groupes et Géométrie"

Organisé par

Section de mathématiques

Intervenant-e-s

Sanaz Pooya, Université de Neuchâtel

entrée libre

Classement

Catégorie: Séminaire

Mots clés: groupes et géométrie