Qualitative graph convergence and the space of Cantor actions (Gabor Elek, Lancaster)

20.11.2018 10:30

In the talk I will introduce the qualitative analogue of the Benjamini-Schramm convergence and local-global convergence (Hatami-Lovasz-Szegedy) of finite graphs and Schreier graphs. The study of the limit objects leads to the notion of qualitative weak equivalence of Cantor actions, the analogue of the weak equivalence notion for p.m.p. actions. I intend to show the qualitative analogue of the Abert-Weiss Theorem and the compactness theorem, as well the weak invariance of certain important properties of Cantor actions.


Room 623, Séminaire "Groupes et Géométrie"

Organisé par

Section de mathématiques


Gabor Elek, Lancaster

entrée libre


Catégorie: Séminaire

Mots clés: groupes et géométrie