Non-spinnable hyperbolic manifolds (Stefano Riolo, Université de Neuchâtel)

01.10.2019 10:30

Let's say that a manifold is "spinnable" if it admits a spin structure. (Every manifold here is smooth, connected, closed, and orientable.) Unlike higher-dimensional manifolds, every surface or 3-manifold is spinnable. Let's now focus on hyperbolic manifolds. By a work of Deligne and Sullivan (1975), every hyperbolic manifold is finitely covered by a spinnable manifold. On the other hand, we will see that there exist non-spinnable hyperbolic manifolds of all dimensions bigger than three. Joint work with B. Martelli and L. Slavich.

Lieu

Room 623, Séminaire "Groupes et Géométrie"

Organisé par

Section de mathématiques

Intervenant-e-s

Stefano Riolo, Université de Neuchâtel

entrée libre

Classement

Catégorie: Séminaire

Mots clés: groupes et géométrie