Non-spinnable hyperbolic manifolds (Stefano Riolo, Université de Neuchâtel)

01.10.2019 10:30

Let's say that a manifold is "spinnable" if it admits a spin structure. (Every manifold here is smooth, connected, closed, and orientable.) Unlike higher-dimensional manifolds, every surface or 3-manifold is spinnable. Let's now focus on hyperbolic manifolds. By a work of Deligne and Sullivan (1975), every hyperbolic manifold is finitely covered by a spinnable manifold. On the other hand, we will see that there exist non-spinnable hyperbolic manifolds of all dimensions bigger than three. Joint work with B. Martelli and L. Slavich.


Room 623, Séminaire "Groupes et Géométrie"

Organisé par

Section de mathématiques


Stefano Riolo, Université de Neuchâtel

entrée libre


Catégorie: Séminaire

Mots clés: groupes et géométrie