Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces (Andrea Seppi, Université de Grenoble)

05.10.2021 10:30

Minimal Lagrangian maps play an important role in Teichmüller theory, with important existence and uniqueness results for hyperbolic surfaces obtained by Labourie, Schoen, Bonsante-Schlenker, Toulisse and others. In positive curvature, it is thus natural to ask whether one can find minimal Lagrangian diffeomorphisms between two spherical surfaces with cone points. In this talk we will show that the answer is negative, unless the two surfaces are isometric. As an application, we obtain a generalization of Liebmann's theorem for branched immersions of constant curvature in Euclidean space. This is joint work with Christian El Emam.


Bâtiment: Conseil Général 7-9

Room 1-05, Séminaire Groupes et Géométrie

Organisé par

Section de mathématiques


Andrea Seppi, Université de Grenoble

entrée libre


Catégorie: Séminaire

Mots clés: groupes et géométrie