On quasi-isometries of negatively curved homogeneous spaces (Enrico Le Donne, Université de Fribourg)

16.11.2021 10:30

Each negatively curved homogeneous space has the structure of a Lie group that is the semidirect product of a nilpotent group and the real line. The visual boundary of such a space can be identified with the one-point compactification of the nilpotent group. In this talk we present the link between quasi-isometries between negatively curved homogeneous spaces and distinguished maps between their boundaries. These results are from various works in collaboration with Kivioja, Nicolussi-Golo, Pallier, and Xie.

Lieu

Bâtiment: Conseil Général 7-9

Room 1-05, Séminaire "Groupes et géométrie"

Organisé par

Section de mathématiques

Intervenant-e-s

Enrico Le Donne, Université de Fribourg

entrée libre

Classement

Catégorie: Séminaire

Mots clés: groupes et géométrie