Orders on metric spaces and asymptotic invariants (Ivan Mitrofanov, ENS Paris)

30.11.2021 10:30

We study order ratio function -- an asymptotic invariant that describes how well a given metric space can be ordered. We say that an order is "good" if it can be effectively (with sub-linear competitive ratio) used as an universal order for solving traveling salesman problem.
We describe connections of order ratio function with more traditional invariants, such as hyperbolicity, Assouad-Nagata dimension, number of ends and doubling.
The talk is based on joint works with Anna Erschler.

Lieu

Bâtiment: Conseil Général 7-9

Room 1-05, Séminaire "Groupes et géométrie"

Organisé par

Section de mathématiques

Intervenants

Ivan Mitrofanov, ENS Paris

entrée libre

Classement

Catégorie: Séminaire

Mots clés: groupes et géométrie