Floer theoretic correction terms from finite groups actions

26.05.2023 10:30 – 11:30

Floer cohomology comes in various flavours and has developed into a primary tool in low-dimensional topology. In this talk, I will discuss an equivariant version of Seiberg–Witten–Floer cohomology for finite group actions on rational homology 3-spheres. Our construction gives rise to a series of numerical invariants or 'correction terms', which are a certain equivariant generalisation of the Ozsvath–Szabo d-invariant. I will survey some of the properties and applications of these invariants, such as knot concordance invariants and as obstructions to extending group actions and equivariant embeddings.

Lieu

Bâtiment: Conseil Général 7-9

Room 1-07, Séminaire "Groupes de Lie et espaces de modules"

Organisé par

Section de mathématiques

Intervenant-e-s

Pedram Hekmati, Aukland, NZ

entrée libre

Classement

Catégorie: Séminaire