The equivariant genera of marked strongly invertible knots associated with $2$-bridge knots (Mikami Hirasawa, Nagoya Institute of Technology)

21.03.2024 14:15

A marked strongly invertible knot is a triple $(K,h,\delta)$ of a knot $K$ in $S^3$, a strong inversion $h$ of $K$, and a subarc $\delta \subset \Fix(h)\cong S^1$ bounded by $\Fix(h)\cap K\cong S^0$. An invariant Seifert surface for $(K,h,\delta)$ is an $h$-invariant Seifert surface for $K$ that intersects $\Fix(h)$ in the arc $\delta$. In this paper, we completely determine the equivariant genus (the minimum of the genera of invariant Seifert surfaces for $(K,h,\delta)$) of every marked strongly invertible knot $(K,h,\delta)$ with $K$ a $2$-bridge knot. We concretely construct invariant Seifert surfaces on minimal equivariant genera.
This is a joint work with Makoto Sakuma and Ryota Hiura.

Lieu

Bâtiment: Conseil Général 7-9

Room 1-15, Séminaire "Topologie et Géométrie"

Organisé par

Section de mathématiques

Intervenant-e-s

Mikami Hirasawa, Nagoya Institute of Technology

entrée libre

Classement

Catégorie: Séminaire