Discrete and regularized Laplacian determinants on fractals (Konstantinos Tsougkas, University of Skövde)

10.12.2024 10:30

We will study spectral zeta functions arising from the Laplace operator on specific self-similar fractals. Under certain conditions a relationship exists between the logarithm of the determinant of the discrete graph Laplacian on the sequence of graphs approximating the fractal and the regularized Laplacian determinant on the fractal itself which is defined via help of the spectral zeta function. We will explore this connection and present a list of concrete examples where this phenomenon happens.

Lieu

Bâtiment: Conseil Général 7-9

Room 1-05, Séminaire "Groupes et géométrie"

Organisé par

Section de mathématiques

Intervenant-e-s

Konstantinos Tsougkas, University of Skövde

entrée libre

Classement

Catégorie: Séminaire

Mots clés: groupes et géométrie