Rigid measures on G-spaces (Mehrdad Kalantar, University of Houston)

02.06.2020 16:30

Let G be a topological group acting on a compact Hausdorff space X. We say a quasi-invariant Borel probability measure \nu on X is (G-)rigid if there is a unique G-equivariant unital positive map from C(X) to L^\infty(X, \nu). We give several examples of such measures, review some basic facts, and present applications in rigidity problems concerning unitary representations and operator algebras associated to the group G.
This is joint work with Yair Hartman.


Join the Zoom session https://unige.zoom.us/j/696379617, Password : Exxxx (We gave his name to a very useful characteristic) Att. heure inhabituelle, Séminaire "Groupes et Géométrie"

Organisé par

Section de mathématiques


Mehrdad Kalantar, University of Houston

entrée libre


Catégorie: Séminaire

Mots clés: groupes et géométrie

Fichiers joints

Geneva - Group theory virtual seminar-slides.pdf205.6 Kb